Resposta :
Siga a resolução da questão
[tex]\mathtt{0 = 6 - 5t + {t}^{2} } \\ \\ \mathtt{6 - 5t + {t}^{2} = 0} \\ \\ \mathtt{ {t}^{2} - 5t + 6 = 0} \\ \\ \mathtt{t = \frac{ - ( - 5)\pm \sqrt{ {( - 5)}^{2} - 4 \times 1 \times 6} }{2 \times 1} } \\ \\ \mathtt{t = \frac{ - ( - 5)\pm \sqrt{ {( - 5)}^{2} - 4 \times 6} }{2} } \\ \\ \mathtt{t = \frac{5\pm \sqrt{ {( - 5)}^{2} - 4 \times 6} }{2} } \\ \\ \mathtt{t = \frac{5\pm \sqrt{25 - 4 \times 6} }{2} } \\ \\ \mathtt{x = \frac{5\pm \sqrt{25 - 24} }{2} } \\ \\ \mathtt{t = \frac{5\pm \sqrt{1} }{2} } \\ \\ \mathtt{t= \frac{5\pm1}{2} } \\ \\ \begin{rcases}\mathtt{t = \frac{5\pm1}{2} }\end{rcases}\mathtt{\Rarr}\red{\boxed{\boxed{\mathtt{ t_{1} = 2}}}} \\ \begin{rcases}\mathtt{t = \frac{5\pm1}{2} }\end{rcases}\mathtt{\Rarr}\red{\boxed{\boxed{\mathtt{ t_{2} =3 }}}}[/tex]
Resposta: item (b).
Att: José Armando