Resolva a expressão:

Resposta:
Explicação passo a passo:
[tex]A_{n,p} =\frac{n!}{(n-p)!}[/tex]
[tex]A_{6,2} =\frac{6!}{4!} =\frac{6.5.4!}{4!}=6.5=30[/tex]
[tex]A_{4,3} =\frac{4!}{1!} =\frac{4.3.2.1}{1} =24[/tex]
[tex]A_{5,2} =\frac{5!}{3!} =\frac{5.4.3!}{3!}=5.4=20[/tex]
[tex]A_{9,2} =\frac{9!}{7!} =\frac{9.8.7!}{7!}=9.8=72[/tex]
[tex]A_{8,1} =\frac{8!}{7!} =\frac{8.7!}{7!}=8[/tex]
[tex]C_{n,p}=\frac{n!}{p!.(n-p)!}[/tex]
[tex]C_{10,4}=\frac{10!}{4!.(10-4)!}[/tex]
[tex]C_{10,4}=\frac{10!}{4!.6!}[/tex]
[tex]C_{10,4}=\frac{10.9.8.7.6!}{24.6!}[/tex]
[tex]C_{10,4}=\frac{10.9.8.7}{24}[/tex]
[tex]C_{10,4}=\frac{10.72.7}{24}[/tex]
[tex]C_{10,4}=\frac{10.24.3.7}{24}[/tex]
[tex]C_{10,4}=10\:.\:3\:.\:7=210[/tex]
[tex]\frac{30+24-20}{72+8}+210=[/tex]
[tex]\frac{34}{80} +210=[/tex]
[tex]0,425+210=[/tex]
[tex]210,425[/tex]