determine as raízes das equações completas do 2° grau (use Bhaskara) 4x²- 4x = x² + 3x - 4

As Raízes da equação são S = { 4/3 ; 1 }
[tex]\boxed{\begin{array}{lr} \boxed{\begin{array}{lr} \boxed{\begin{array}{lr} \boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x=\dfrac{-b\pm\sqrt{b^2-4.a.c}}{2.a} \end{array}} \end{array}} \end{array}} \end{array}} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} 4x^2-4x=x^2+3x-4\\4x^2-4x-x^2=3x-4\\4x^2-4x-x^2-3x=-4\\4x^2-4x-x^2-3x+4=0\\3x^2-4x-3x+4=0\\\boxed{\begin{array}{lr} 3x^2-7x+4=0\ \ \checkmark \end{array}} \end{array}}[/tex]
A = quadrático.
B = Linear.
C = Constante.
[tex]\boxed{\begin{array}{lr} ax^2+bx+c=0 \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} 3x^2-7x+4=0 \end{array}}\\\\\boxed{\begin{array}{lr} A=quadra\´tico\ =\boxed{ 3\boxed{ \bf x^2 }}\end{array}}\\\\\boxed{\begin{array}{lr} B=Inco\´gnita=\boxed{\begin{array}{lr} -7 \boxed { \bf x } \end{array}} \end{array}}\\\boxed{\begin{array}{lr} C=termo\ \ independente=\boxed{\begin{array}{lr} \bf 4 \end{array}} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} 3x^2-7x+4=0 \rightarrow\begin{cases} \boxed{\begin{array}{lr} A=3\\B=-7\\C=4 \end{array}} \end{cases} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} x=\frac{-b\ \pm\ \boxed{\begin{array}{lr} \sqrt{\bf b^2-4.a.c} \end{array}}}{2.a} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} \Delta=b^2-4.a.c \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} \Delta=b^2-4.a.c\\\Delta=(-7)^2-4.a.c\\\Delta=(-7)^2-4.3.c\\\Delta=(-7)^2-4.3.4\\\Delta=49-4.3.4\\\Delta=49-48\\\Delta=1 \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x=\frac{-b\ \pm\ \boxed{\begin{array}{lr} \sqrt{1} \end{array}}}{2.a} \end{array}} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} x=\frac{-b\ \pm\ \boxed{\begin{array}{lr} 1 \end{array}}}{2.a} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} x=\dfrac{7\pm1}{2.3} \end{array}}\\\boxed{\begin{array}{lr} x=\dfrac{7\pm1}{6}\ \ \checkmark \end{array}}[/tex]
[tex]\/ \ \ \ \ \ \ \ \ \ \leadsto\ \ \ \ \ \ \ \boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x'=\dfrac{7+1}{6} \end{array}} \end{array}}\\\boxed{\begin{array}{lr} x=\dfrac{7\pm1}{6} \end{array}}\\\/ \ \ \ \ \ \ \ \ \ \leadsto \ \ \ \ \ \ \ \ \boxed{\begin{array}{lr} \boxed{\begin{array}{lr} x''=\dfrac{7-1}{6} \end{array}} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} x'=\dfrac{7+1}{6} \end{array}}>\boxed{\begin{array}{lr} x'=\dfrac{8}{6} \end{array}}>\boxed{\begin{array}{lr} x'=\dfrac{4}{3} \end{array}}[/tex]
[tex]\boxed{\begin{array}{lr} x''=\dfrac{7-1}{6} \end{array}}>\boxed{\begin{array}{lr} x''=\dfrac{6}{6} \end{array}}>\boxed{\begin{array}{lr} x''=1 \end{array}}[/tex]
Resposta;
[tex]S=\{\frac{4}{3}\ ;1\}[/tex]
Saiba Mais em;
brainly.com.br/tarefa/43419513
brainly.com.br/tarefa/45867870
brainly.com.br/tarefa/45680976
brainly.com.br/tarefa/45698248
Aprenda Mais em;
brainly.com.br/tarefa/43419252
brainly.com.br/tarefa/45403268
brainly.com.br/tarefa/45633240
brainly.com.br/tarefa/45586625
[tex]|\underline{\overline{\mathcal{\boldsymbol{\LaTeX}}}}|\\ |\underline{\overline{\mathcal{\boldsymbol{\mathbbe\mathcal{{ATT:JOVEM\ \ \ LENDÁRIO\ \ \heartsuit}}}}}}|[/tex]