Resposta :
Explicação passo-a-passo:
Temos a seguinte PG(3, -6, 12, ..., 768)
Calculando a razão da PG:
[tex]q=\dfrac{a_{2} }{a_{1} } \\\\q=\dfrac{-6}{3} \\\\\boxed{q=-2}[/tex]
Calculando a posição do último termo:
[tex]a_{1}.q^{n-1}=a_{n} \\\\3.(-2)^{n-1}=768\\\\(-2)^{n-1}=\dfrac{768}{3} \\\\(-2)^{n-1}=256\\\\(-2)^{n-1}=(-2)^{8}\\\\\text Igualando\ os\ expoentes:\\\\n-1=8\\\\\boxed{n=9}[/tex]
Calculando a soma dos 9 termos da PG:
[tex]S_{n}=\dfrac{a_{1}.(q^{n}-1) }{q-1} \\\\S_{9}=\dfrac{a_{1}.(q^{9}-1) }{q-1}\\\\S_{9}=\dfrac{3.((-2)^{9}-1) }{(-2)-1}\\\\S_{9}=\dfrac{3.(-512-1) }{-3}\\\\S_{9}=\dfrac{(-513) }{-1}\\\\\boxed{\boxed{S_{9}=513}}[/tex]