Determine a medida de x na figura a seguir:

!! Veja a imagem !!
1ª Forma de Resolver :
Chamando a altura de y , temos :
[tex]\Delta_{\text{maior}} \to (5+\text x)^2+\text y^2= (4\sqrt{5})^2[/tex]
[tex]\Delta_{\text{menor}} \to \text x^2+\text y^2 = 5^2[/tex]
Subtraindo a 2ª da 1ª :
[tex](5+\text x)^2+\text y^2 - \text x^2 - \text y^2 = 80-25[/tex]
[tex]25+10\text x + \text x^2 - \text x^2 =55[/tex]
[tex]10\text x = 55 - 25[/tex]
[tex]10\text x = 30[/tex]
[tex]\huge\boxed{\text x = 3}\checkmark[/tex]
2ª Forma de resolver :
[tex]\displaystyle \Delta_{\text {menor}} \to \text{Cos}(\theta) = \frac{\text x}{5}[/tex]
[tex]\Delta_{\text{maior}} \to \text{Lei dos Cossenos } :\\\\\text{AC}^2 = \text{CD}^2+\text{AD}^2-2.\text{CD.AD}.\text{Cos}(180^{\circ}-\theta)[/tex]
[tex](4\sqrt5)^2=5^2+5^2-2.5.5.(-\text{Cos}(\theta))[/tex]
[tex]\displaystyle 80=50+2.5.5.\frac{\text x}{5}[/tex]
[tex]\displaystyle 10\text x = 30[/tex]
[tex]\huge\boxed{\text x = 3}\checkmark[/tex]